FRACTONES IN SCIENTIFIC ARTICLES
Beiriger J, Habib A, Jovanovich N, Kodavali CV, Edwards L, Amankulor N, Zinn PO. (2022) The Subventricular Zone in Glioblastoma: Genesis, Maintenance, and Modeling. Front Oncol. 2022 Mar 10;12:790976. doi: 10.3389/fonc.2022.790976. PMID: 35359410; PMCID: PMC8960165.
Melrose J. (2022) Fractone stem cell niche components provide intuitive cues in the design of new therpapeutic procedures/biomatrices for neural repair. Int J Mol Sci 23:5148.
https://doi.org/10.3390%2Fijms23095148
Norton, E.S., Whaley, L.A., Ulloa-Navas, M.J. et al. (2022). Glioblastoma disrupts the ependymal wall and extracellular matrix structures of the subventricular zone. Fluids Barriers CNS 19, 58 doi: 10.1186/s12987-022-00354-8
Kerever A, Arikawa-Hirasawa E. (2021) Optimal extracellular matrix niches for neurogenesis : Identifying glycosaminoglycan chain composition in the subventricular neurogenic zones. Front Neuroanat . https://doi.org/10.3389/fnana.2021.764458
Kerever, A., Nagahara, F., Keino-Masu, K., Masu, M., van Kuppevelt, T. H., Vivès, R. R., et al. (2021). Regulation of fractone heparan sulfate composition in young and aged subventricular zone neurogenic niches. Glycobiology cwab081. doi: 10.1093/glycob/cwab081
References
Kim HJ, Lee E, Nam M, Chung JK, Joo S, Nam Y, Sun W. v(2021) Contribution of Extracellular Matrix Component Landscapes in the Adult Subventricular Zone to the Positioning of Neural Stem/Progenitor Cells. Exp Neurobiol 2021;30:275-284. https://doi.org/10.5607/en21012
Sato, Y., Kiyozumi, D., Futaki, S., Nakano, I., Shimono, C., Kaneko, N., et al. (2019). Ventricular–subventricular zone fractones are speckled basement membranes that function as a neural stem cell niche. Mol. Biol. Cell 30, 56–68. doi: 10.1091/mbc.E18-05-0286
Nascimento MA, Sorokin L, Coelho-Sampaio T. Fractone Bulbs Derive from Ependymal Cells and Their Laminin Composition Influence the Stem Cell Niche in the Subventricular Zone. J Neurosci. 2018 Apr 18;38(16):3880-3889. doi: 10.1523/JNEUROSCI.3064-17.2018. Epub 2018 Mar 12. PMID: 29530987; PMCID: PMC6705924.
Yamada, T., Kerever, A., Yoshimura, Y., Suzuki, Y., Nonaka, R., Higashi, K., et al. (2017). Heparan sulfate alterations in extracellular matrix structures and fibroblast growth factor-2 signaling impairment in the aged neurogenic niche. J. Neurochem. 142, 534–544. doi: 10.1111/jnc.14081
Mercier, F (2016) Fractones: extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease. Cell. Mol. Life Sci. 73, 4661–4674 (2016). https://doi.org/10.1007/s00018-016-2314-y
Kerever, A., Yamada, T., Suzuki, Y., Mercier, F., and Arikawa-Hirasawa, E. (2015). Fractone aging in the subventricular zone of the lateral ventricle. J. Chem. Neuroanat. 66–67, 52–60. doi: 10.1016/j.jchemneu.2015.06.001
Kerever Yamada T, Suzuki Y, Mercier F, Arikawa-Hirasawa E (2015) Fractone aging in the subventricular zone of the lateral ventricle. J Chem Neuroanat 66–67:52–60
Mercier F, Douet V (2014) Bone morphogenetic protein-4 inhibits adult neurogenesis and is regulated by fractone-heparan sulfates in the subventricular zone. J Chem Neuroanat 57–58:54–61
Kerever A, Mercier F, Nonaka R, de Vega S, Oda Y, Zalc B, Okada Y, Hottari N, Yamada Y, Arikawa-Hirasawa E (2014) Perlecan is required for FGF-2 signaling in the neural stem cell niche. Stem Cell Res 12:492–505
Douet V, Arikawa-Hirasawa E, Mercier F (2013) Fractone-heparan sulphates mediate FGF-2 stimulation of cell proliferation in the adult subventricular zone. Cell Prolif 46:137–145
Mercier F, Weatherby TM, Harttine DK (2013) Meningeal-like organization of neural tissue sin calanoid copepods. J Comp Neurol 521:760–790
Douet V, Arikawa-Hirasawa E, Mercier F (2012) Fractone-heparan sulfates mediate BMP-7-inhibition of cell proliferation in the adult subventricular zone. Neurosci Lett 528:120–125
Mercier F, Cho-Kown Y, Douet D (2012) Hippocampus/amygdala alterations, loss of heparan sulfates, fractones and ventricle wall reduction in adult BTBR T+tf/J mice, animal model for autism. Neurosci Lett 506:208–213
Mercier F., Schnack J., Chaumet M.S.G. (2011) Fractones: Home and Conductors of the Neural Stem Cell Niche. In: Seki T., Sawamoto K., Parent J.M., Alvarez-Buylla A. (eds) Neurogenesis in the Adult Brain I. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53933-9_4
Mercier F, Cho-Kwon Y, Kodama Rv (2011) Meningeal/vascular alterations and loss of extracellular matrix in the neurogenic zone of adult BTBR T+tf/J mice, animal model for autism. Neurosci Lett 498:173–178
Mercier F, Schnack J, Saint George Chaumet M (2011) Fractones: home and conductors of the neural stem cell niche. In: Seki T et al (eds) Neurogenesis in the adult brain, vol 1. Springer, Japan, pp 109–136
Kerever A, Schnack J, Vellinga D, Ichikawa N, Moon C, Arikawa-Hirasawa E, Efird JT, Mercier F (2007) Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor FGF-2 from the extracellular milieu. Stem Cells 25:2146–2157
Mercier F, Mambie S, Hatton GI (2006) Brain macrophages: enigmas and conundrums. In: Dermietzel et al (eds) Blood-brain barriers—from ontogeny to artificial barriers. Wiley-VCH, Weinheim, pp 129–165
Mercier F, Hatton GI. (2004) Meninges and perivasculature as mediators of CNS plasticity. In: Non-neuronal cells in the nervous system: function and dysfunction. Adv Mol Cell Biol 31:215–253
Mercier F (2004) Astroglia as a modulation interface between meninges and neurons. In: Hatton GI, Parpura V (eds) Glial/neuronal signaling, chapter 5. Kluwer Publishers, Amsterdam, pp 125–162
Mercier F, Kitasako JT, Hatton GI. (2003) Fractones and other basal laminae in the hypothalamus. J. Comp. Neurol. 455:324-340.
Mercier F, Kitasako JT, Hatton GI (2002) Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J Comp Neurol 451:170–188
Mercier F, Hatton GI (2000) Immunocytochemical basis for a meningeo-glial network. J Comp Neurol 420:445–465
Mathematics and simulation
Beros, A., Chyba M., Fronville A. and Mercier F.(2018) "A Morphogenetic Cellular Automaton," Annual American Control Conference (ACC), 2018, pp. 1987-1992, doi: 10.23919/ACC.2018.8431498.
Chyba M,Tamura-Sato A. (2017) Morphogenesis modelization of a fractone-based model, Discrete & Continuous Dynamical Systems - B,22,1,29,58,2016-12-1,1531-3492_2017_1_29, Morphogenesis.
Chyba M, Mercier F, Tamura-Sato A. (2013) A mathematical model of fractone-controlled morphogenesis. DOI:10.23919/ECC.2013.6669500
Chyba M, Mercier F, Rader J, Douet V, Arikawa-Hirasawa E, Chow Kwon Y, Kodama R. (2011) Dynamic mathematical modeling of cell-fractone interactions. J Math Ind 3:79–88
Chyba M, Mariot J, Mercier F, Rader J, Telleshi G. (2011) Modeling cell-fractone dynamics using
mathematical control theory. Conference manuscript, European Control Conference, 4419-4423.
Chyba M, Kobayashi MH, Cho Kwon Y, Mercier F, Rader JC, Tamura-Sato A. (2011) A new approach to
modeling morphogenesis using control theory. Sao Paulo J. Math Sciences, Vol.5 (2) 281-315
(2011).